Date: October 2015.
Source: Progress in Orthodontics 201516:36.
Background: The use of three-dimensional (3D) surface imaging is becoming more popular and accepted in the fields of Medicine and Dentistry. The present study aims to develop a technique to automatically localise and quantify soft-tissue asymmetry in adults using 3D facial scans. This may be applied as a diagnostic tool to monitor growth and dynamic changes and to evaluate treatment outcomes.
Methods: 3dMD facial surface data were captured from 55 adults comprising 28 symmetrical faces and 27 asymmetrical faces using a 3dMDface system. A landmark-independent method, which compared the original and the mirrored 3D facial data, was developed to quantify the asymmetry. A Weibull distribution-based probabilistic model was generated from the root-mean-square (RMS) error data for the symmetrical group to designate a level of asymmetry which represented a normal range.
Results: Statistically significant (p < 0.0001) differences in the RMS error values were found when comparing symmetrical with asymmetrical groups and a similarly significant difference was identified between the lower and the upper face of the asymmetrical group.
Conclusions: The proposed 3D imaging-based method of identifying and quantifying facial soft-tissue asymmetry was fast and effective. The Weibull distribution-based comparison of a person’s asymmetry with respect to a large sample of symmetrical faces may also be used to evaluate growth, soft-tissue compensations and surgical outcomes.
Article: Facial asymmetry assessment in adults using three-dimensional surface imaging.
Authors: Arti Patel, Syed Mohammed Shamsul Islam, Kevin Murray and Mithran S. Goonewardene.